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Neural Structure Fields (NeSF): Neural Field-based crystal structure decoder

Representing crystal structures of materials to facilitate determining them via neural networks is crucial for enabling machine-learning applications involving crystal 

structure estimation. Here we propose Neural Structure Fields (NeSF) as an accurate and practical approach for representing crystal structures using neural networks. 

NeSF considers a crystal structure as a continuous field rather than as a discrete set of atoms. NeSF overcomes the tradeoff between spatial resolution and 

computational complexity. NeSF can represent any crystal structure.

• We developed neural field-based (voxel-free) crystal decoder

• Crystal structure can be written by proposed vector fields representations: Structure Fields

• Neural Field technique to model a structure field by a simple neural network: NeSF

• We also develop an algorithm that reconstructs atom positions and species from NeSF (or Structure Fields)

Voxel-based vs Continuous Representation

continuous field representation for crystal structure

Our idea of representing crystal structures as continuous vector fields has 

been partially and implicitly explored using voxelization in recent MI

study [1], but without explicit consideration as discretized vector fields. The 

discretization of 3D data considerably suffers from the tradeoff between 

spatial resolution and computational complexity. The proposed NeSF is 

inspired by the concepts of Neural Field [2, 3, 4, 5]. Theoretically, the NeSF

can achieve infinitely high spatial resolution with compact (memory- and 

parameter-efficient) neural networks in place of costly 3D CNNs. There is 

essentially no tradeoff between the spatial resolution and required memory.

Voxel-based representation

• Limited resolution (practically 32x32x32 in practice [1])

• Have tradeoff between resolution and computational costs (both time 

and memory)

• Many parameters (often causes overfittings)

Continuous (Neural Field-based) representation

• Can represents infinitely high resolution

• Have no tradeoff between resolution and computational costs

• Less parameters

Neural Field technique

Implicitly represents “field” by using a neural network

Neural Structure Field (NeSF)

Structure Field = Position Field + Species Field

NeSF: Modeling Structure Field using Neural Field technique

Neural Field is a technique that represents a (vector) field by using simple 

neural networks [2, 3, 4, 5]. The key idea of neural field is that the field is 

implicitly described point-by-point. When a query point is given, the network 

returns the value of the query point.

𝒚 = 𝑓 𝒙, 𝒛

Vector value
corresponding to
- latent vector 𝒛
- query point 𝒙

Query point Latent vector
(given field-by-field)

Modeled by neural network

• Position Field: a vector pointing to the nearest atom from a query point.

• Species Field: a one-hot vector of the nearest atom species

We approximate the Structure Field by using neural networks via Neural Field 

technique. We also combine PointNet-based simple encoder to the NeSF decoder, 

which give an autoencoder for crystal structures.

 

 

 

               

                    

                    

                       
     

                             

    
     

     

Reconstruction Algorithm

Method to convert a crystal structure from a NeSF representation

1. Initialize particles: Regularly spread initial query points at 3D grid 

points within a bounding box (common to each dataset)

2. Move particles: Update the position of each query points using the 

position field. (Iterate this process)

3. Score particles: Score each query points and filter outliers by using 

estimated residual distance to the atom positions. 

4. Detect atoms: Apply a simple clustering algorithm to detect each 

atomic position. 

5. Estimate species: to estimate the atomic species by using Species 

Field  at each atomic position.

Experimental Results

We compared proposed method with the ICSG3D as a autoencoder. On the 

ICSG3D using dataset (AB, ABX2, and ABX3 entries on the Material Project) the 

proposed method achieves high accuracy to reconstruct for the test entries.
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Example of Reconstruction Result in Test Dataset: mp-22556 (Tm3TlC)

Method NeSF (Proposed) ICSG3D [1]

Error in Number of Atoms [%] 0.53 ± 0.25 2.67 ± 0.84

Position Error (Actual) [Å] 0.0308 ± 0.0112 0.0877 ± 0.0306

Position Error (Detected) [Å] 0.359 ± 0.0226 0.1057 ± 0.0284

Species Error (Actual) [%] 4.31 ± 0.39 64.39 ± 1.91

Species Error (Detected) [%] 4.36 ± 0.39 65.05 ± 1.85

Reconstruction Results in Test Dataset

Ground Truth ICSG3D [1]NeSF (Proposed)
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