グラフ理論に基づいたLattice fermionと Laplacian operatorとしてのWilson term

湯本純
秋田大学大学院 理工学研究科

Background（Species and Wilson term）

格子上の場の理論には，fermion doublingという難問が存在する。
Fermion doubling
QCDに必要な性質を理論に課すことで，
複数のlattice fermion（species）が出現するという問題。
これらのspeciesは縮退しているため，区別することができない。

Wilson fermion ：species－splitting mass fermion

Wilson term ：species－splitting term $S_{W}=\sum_{n, \mu} \frac{a^{5}}{2} \bar{\psi}_{n}\left(2 \psi_{n}-\psi_{n+\mu}-\psi_{n-\mu}\right)$

$$
D_{W}(p)=\frac{1}{a} \sum_{\mu}\left[i \gamma_{\mu} \sin a p_{\mu}+\left(1-\cos a p_{\mu}\right)\right]
$$

Physical $(0,0,0,0)$

$$
D_{W}(p)=i \gamma_{\mu} p_{\mu}+O(a)
$$

Non physical $(\pi / a, 0,0,0)$
$D_{W}(p)=i \gamma_{\mu} p_{\mu}+\frac{2}{a}+O(a)$

Previous research

Maximal \＃of species depend on the topological invariant of lattice．

Table：Topological invariant and maximum \＃of the species		
lattice	Topological invariant	maximal \＃of species d
4－d torus	$1+4+6+4+1$	16
Torus T^{D}	$(1+1)^{D}$	2^{D}
Hyperball B^{D}	$1+0+0+\cdots$	1
Sphere S^{D}	$1+0+0+\cdots+1$	2
$T^{D} \times B^{d}$	$2^{D}+0$	2^{D}

数学的な説明を与えるために，graph theoryに着目した。

Lattice fermions as graph theory

\＃of Fermion species $\quad \Longrightarrow \quad$ Nullity of spectral matrix［J．Y，T．Msumi（2022）］ Wilson term \Longrightarrow Laplacian matrix and topological invariant

New conjecture on species doubling of lattice fermions！

Spectral graph theory

Definition（graph）

A graph G is a pair $G=(V, E) . \mathrm{V}$ is a set of vertices and E is a set of edge

Definition（directed graph）

A directed graph is a pair (V, E) of sets of vertices and edges together with two maps init ：$E \rightarrow V$ and ter ：$E \rightarrow V$ ．The two maps are assigned to every edge $e_{i j}$ with an initial vertex init $\left(e_{i j}\right)=v_{i} \in V$ and a terminal vertex $\operatorname{ter}\left(e_{i j}\right)=v_{j} \in V$ ．If init $\left(e_{i j}\right)=\operatorname{ter}\left(e_{i j}\right)$ ，the edge $e_{i j}$ is called a loop．

Definition（weighted graph）

A weighted graph has a value（weight）for each edge in a graph

Definition（adjacency matrix）

An adjacency matrix A of graph is the $|V| \times|V|$ matrix given by

$$
A_{i j} \equiv \begin{cases}w_{i j} & \text { if there is a edge from } i \text { to } j \\ 0 & \text { otherwise }\end{cases}
$$

where $w_{i j}$ is the weight of an edge from i to j ．
e．g．A graph G and an adjacency matrix A_{G} of G ．

Lattice fermions as spectral graphs

J．Y，T．Misumi，JHEP 02， 104 （2022）
The naive lattice action as spectral graph theory is

$$
S=\sum_{m, n} \sum_{\mu} \bar{\psi}_{m} \gamma_{\mu} D_{m n} \psi_{n}=\sum_{\mu} \overline{\boldsymbol{\psi}} \gamma_{\mu} A_{\mu} \boldsymbol{\psi} \equiv \overline{\boldsymbol{\psi}} \mathcal{D} \boldsymbol{\psi}
$$

where $\boldsymbol{\psi}=\sum_{n} \psi_{n}|n\rangle$ with $|n\rangle \equiv \bigotimes_{\mu}\left|n_{\mu}\right\rangle$ ．
$\mathcal{D}(k)=\sum_{k, \mu} i \gamma_{\mu} \sin \left[\frac{2 \pi}{N_{\mu}}\left(k_{\mu}-1\right)\right]|k\rangle\langle k|=0 \quad \Rightarrow \quad \sin \left[\frac{2 \pi}{N_{\mu}}\left(k_{\mu}-1\right)\right]=0$

16 species！

$$
\begin{aligned}
\text { Lattice field theory } & \Longrightarrow \text { Spectral graph theory } \\
\text { Lattice fermion } & \Longrightarrow \text { Directed and Weighted spectral graph } \\
\text { \# of Fermion species } & \Longrightarrow \text { Nullity of spectral matrix }
\end{aligned}
$$

Wilson term as Laplacian operator

Definition（Laplacian operator）

A Laplacian operator L of a graph $G(V, E)$ is given by

$$
L_{i j} \equiv \begin{cases}d_{i} & \text { if } i=j \\ -1 & \text { if } i \neq j \text { and }(i, j) \text { are linked } \\ 0 & \text { otherwise }\end{cases}
$$

where d_{i} is the number of edges sharing the site i ．
e．g．The Lagrangian on T^{4} constructed from the Laplacian operator \mathcal{L} is

$$
\bar{\psi} \mathcal{L} \boldsymbol{\psi}=2 \sum_{n, \mu} \bar{\psi}_{n}\left(2 \psi_{n}-\psi_{n+\mu}-\psi_{n-\mu}\right) \quad \Rightarrow \quad S_{W}=\frac{a^{5}}{4} \overline{\boldsymbol{\psi}} \mathcal{L} \psi
$$

The Laplacian operator results in the Wilson term！

Theory（Hodge theory）

The nullity of a Laplacian operator defined on a complex chain coincides with the 0－th Betti number that is the topological invariant
e．g．The Betti number and nullity of Dirac matrix with the Laplacian on T^{4}
the r－th Betti number β_{r} of T^{4}
$\beta_{0}\left(T^{4}\right)=1, \quad \beta_{1}\left(T^{4}\right)=4, \quad \beta_{2}\left(T^{4}\right)=6$,
$\operatorname{Im} \lambda$

$$
\beta_{3}\left(T^{4}\right)=4, \quad \beta_{4}\left(T^{4}\right)=1,
$$

The nullity of Dirac matrix with the Laplacian is consistent with Hodge theory，so \＃of zero－eigenvalue $=\beta_{0}\left(T^{4}\right)=1$ ．
The r－th Betti number and each species－splitting number just match！

Laplacian operator

Wilson term $\quad \Longrightarrow \quad$ and topological invariant（Betti number）

Summary

Lattice fermions as graph theory
\＃of Fermion species \Longrightarrow Nullity of spectral matrix Wilson term \Longrightarrow Laplacian matrix and the Betti number Lattice field theory

Graph theory \longleftrightarrow Topology
We believe that these are closely related．

Discussion

－A new conjecture on the number of fermion species on the discretized manifold．
J．Y，T．Misumi［arXiv：2301．09805］
－The proof of the new conjecture
－The Laplacian operator as Persistent homology and Persistent spectral graph．

