

Hard-core bosonic DMFT study on spin-state transition in LaCoO₃

T. Okauchi, J. Kuneš², and A. Hariki¹

¹Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sakai 599-8531, Japan ²Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria

We study spin-state transition in LaCoO₃ using 'bosonic' dynamical mean field theory (B-DMFT). The spin excitations of LaCoO₃ can be viewed as a collection of mobile spin-triplet excitons which obey a hard-core (HC) constraint. One-particle DMFT self-energy is ill-defined in the HC constraint, leading a numerical difficulty to achieve a DMFT self-consistent condition. To solve this, 1) we adopt a Dyson-Mori formalism in computing the self-energy and 2) develop a continuous-time quantum Monte Carlo impurity numerical solver implementing a broken commutation relation by the HC constraint. To test our methodology for HB-DMFT, we calculate a phase diagram of twodimensional two-band Hubbard model, allowing a staggered order of boson densities that corresponds to a spin-state order (SSO) in the electronic system. We discuss a future plan for an application of the HB-DMFT method to a more realistic model of LaCoO₃.

Introduction: LaCoO ₃		Method: DMFT for hard-core bosons	
Susceptibility	Co ³⁺ (3d ⁶): atomic picture	BDMFT: Anderson impurity model Hardcore constraint	(HC)
K. Asai et al. JPSJ 67 290 (1988)	Low spinIntermediateHigh spin(I_S: S=0)(IS: S=1)(HS: S=2)	$[b, b] = [b^{\dagger} b^{\dagger}] =$	

Excitonic picture: mobility of IS

Co³⁺(3d⁶): excitonic picture

Messages

Problem on HB-DMFT:

- Self energy ill-defined with HC
- Numerical difficulty for achieving **DMFT self-consistent condition**

Solution for this problem:

- Use Dyson-Mori form of the GF
- Apply HC to the CT-QMC solver for

auxiliary Anderson impurity model

Atomic Site

Orbital Flavor

Atomic Site 2

Orbital Flavor 2

Result: calculation under spin-state order

(Fixed: $\beta = 40 \text{ eV}^{-1}$, t = 0.116 eV, $\epsilon_{IS} = 0.34 \text{ eV}$) 2D 2-flavor Hubbard model

$$\hat{H} = \epsilon_{\rm IS} \sum_{\mathbf{i}} \sum_{\alpha} \hat{n}_{\mathbf{i},\alpha}$$

Dynamical HC constraint

On-site energy $-V\sum \hat{n}_{\mathbf{i},1}\hat{n}_{\mathbf{i},2}$ $+t \left[\sum \hat{b}_{\mathbf{i}\pm\boldsymbol{\delta}_{1},1}^{\dagger} \hat{b}_{\mathbf{i},1} + \sum \hat{b}_{\mathbf{i}\pm\boldsymbol{\delta}_{2},2}^{\dagger} \hat{b}_{\mathbf{i},2} \right]$

Local attraction term **Flavor-diagonal and direction-dependent**

hopping term Question

Spin-state order appears by the on-site attraction V (HS excitation)?

Occupation vs attraction V

Spectral density (with HC) V = 590 meVV = 615 meV

implemented properly

Two IS excitons into one HS exciton (immobile bi-exciton) Strong attractive V in LaCoO₃

Large dispersion of IS

Theory: attractive bosonic Hubbard model

• Explicit HC corresponds to $U \rightarrow \infty$

Future work

0.8

Application of HB-DMFT to a realistic model of LaCoO₃ 1) including full IS degrees of freedom and 2) extracting parameters from ab-initio calculation