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Hard-core bosonic DMFT study on spin-state transition in LaCoOs;
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We study spin-state transition in LaCoOs3 using ‘bosonic’ dynamical mean field theory (B-DMFT). The spin excitations of LaCoO3 can be viewed as a collection of mobile
spin-triplet excitons which obey a hard-core (HC) constraint. One-particle DMFT self-energy is ill-defined in the HC constraint, leading a numerical difficulty to achieve a
DMFT self-consistent condition. To solve this, 1) we adopt a Dyson-Mori formalism in computing the self-energy and 2) develop a continuous-time quantum Monte Carlo
impurity numerical solver implementing a broken commutation relation by the HC constraint. To test our methodology for HB-DMF T, we calculate a phase diagram of two-
dimensional two-band Hubbard model, allowing a staggered order of boson densities that corresponds to a spin-state order (SSO) in the electronic system. We discuss a
future plan for an application of the HB-DMFT method to a more realistic model of LaCoO:s.
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BDMFT: Anderson impurity model Hardcore constraint (HC)
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Experiment Vs Theory
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Problem on HB-DMFT: Solution for this problem:

e Self energy ill-defined with HC e Use Dyson-Mori form of the GF

 Numerical difficulty for achieving  Apply HC to the CT-QMC solver for
DMFT self-consistent condition auxiliary Anderson impurity model

Mobility of intermediate spin Co3+(3d¢): excitonic picture
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2D 2-flavor Hubbard model (Fixed:B=40eV-1,t=0.116¢V, gs = 0.34 eV)
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