## テンソルネットワーク法入門

## Introduction：大久保 毅（おおくぼ つよし）

## 経歴

－1999－2008
－九州大学理学部物理学科，大学院理学府疑縮系科学専攻
－2002－2008

- 物性理論研究室所属（指導教員：小田垣孝先生）
- 研究テーマ：ランダムパッキング，境界摂動問題，社会物理学


2008－2012

- 大阪大学大学院理学系研究科 特任研究員（Supervisor：川村光先生）
- 研究テーマ：フラストレート磁性体（古典スピン模型の秩序化・ダイナミクス）
－2012－2017
- 東京大学物性研究所 特任研究員（Supervisor：川島直輝先生）
- 研究テーマ：脱閉じ込め量子相転移，テンソルネットワーク法の量子スピン模型への適用等 －2017－2021．10
- 東京大学大学院理学系研究科 特任講師（東京大学計算科学アライアンス）
- 研究テーマ：テンソルネットワークを中心とした種々のトピック，フラストレート磁性体

2019－

- JST さきがけ「量子情報処理」領域 さきがけ研究者（兼任）
- 研究テーマ：テンソルネットワークを活用し，量子コンピュータで量子多体問題を解きたい


## －2021．7－

－東京大学大学院理学系研究科 量子ソフトウェア寄付講座 特任准教授
研究の興味：多体系の協力現象一般，統計物理学など。
キーワード：相転移，新奇秩序，非平衡ダイナミクス，テンソルネットワーク，…

コンテンツ
－はじめに：テンソルとテンソルネットワーク

- 格子模型で使えるテンソルネットワーク法
- テンソル繰り込み群
- 行列積状態を用いた縮約
- （角転送繰り込み群）
－まとめ


## テンソル？

－ベクトル
$\vec{v}: v_{i}$
$\longrightarrow 1$ 次元的な数字の並び
－行列
$M: M_{i, j}$
$\longrightarrow$ 2次元的な数字の並び

- 般化
- （n階の）テンソル $T: T_{i, j, k}$ $\longrightarrow \mathrm{n}$ 次元的な数字の並び【基本的な演算＝縮約】

行列積：$\quad C_{i, j}=(A B)_{i, j}=\sum_{k} A_{i, k} B_{k, j}$
縮約 ：$D_{i, j, k}=\sum_{\alpha, \beta, \gamma} A_{i, j, \alpha, \beta} B_{\beta, \gamma} C_{\gamma, k, \alpha}$


ダイアグラムを用いたテンソル表記
－ベクトル $\vec{v}: v_{i}$

－テンソル $\quad T: T_{i, j, k}$


テンソルの積（縮約）の表現

$$
\text { * } n \text { 階のテンソル = } n \text { 本の足 }
$$

$$
\begin{aligned}
& C_{i, j}=(A B)_{i, j}=\sum_{k} A_{i, k} B_{k, j} \\
& D_{i, j, k}=\sum_{\alpha, \beta, \gamma} A_{i, j, \alpha, \beta} B_{\beta, \gamma} C_{\gamma, k, \alpha} \\
& \underline{i} \mathrm{C}-\frac{j}{-\mathrm{A}} \underline{k_{\mathrm{B}}} \underline{j}
\end{aligned}
$$

## 縮約の計算量

行列樍：$A, B=\chi \times \chi$

$$
\begin{aligned}
& C=A B \\
& \quad \text { の計算量 }=O\left(\chi^{3}\right)^{2}
\end{aligned}
$$

テンソル縮約：$A=\chi \times \chi$ $B=\chi \times \chi \times \chi$

$$
\begin{aligned}
& C=\sum_{\alpha} A_{i, \alpha} B_{\alpha,,,:} \\
& \\
& \\
& \text { の計算量= } O\left(\chi^{4}\right)^{+4}
\end{aligned}
$$

## ダイアグラムとの対応

- 縮約の計算量はダイアグラムの足の数で分かる
- （メモリ使用量も分かる）


4本 $\longrightarrow O\left(\chi^{4}\right)$

縮約の計算量と計算順
$A=\chi \times \chi \times \chi \times \chi$
テンソル縮約 $:$
$B=\chi \times \chi$
$C=\chi \times \chi \times \chi$
$D=\sum_{\alpha, \beta, \gamma} A_{:,:, \alpha, \beta} B_{\beta, \gamma} C_{\gamma,:, \alpha}$
Case 1：$D=(A B) C$

$$
\text { の計算量 }=O\left(\chi^{5}\right)+O\left(\chi^{5}\right)
$$



Case 2：$D=(A C) B$

$$
\text { の計算量 }=O\left(\chi^{6}\right)+O\left(\chi^{5}\right)
$$



縮約の評価順で計算量が変わる！
＊最適順序の決定はNP困難。実用的なアルゴリズム例
R．N．C．Pfeifer，et al．，Phys．Rev．E 90， 033315 （2014）．

テンソルネットワーク
テンソルネットワーク（TN）：テンソルの縮約で構成されたネットワーク
【（ざっくりした）分類】

- Openな足：あり or なし
- Openな足があり：TN自身が大きなテンソル
- Openな足がなし：TNは数字
- ネットワーク構造：規則的 or 不規則
- ネットワーク構造は問題に応じて変わる

- 例：スピン模型の分配関数は規則的
- 例：分子の多体電子状態は不規則
- ネットワークサイズ：有限 or 無限
- 基本的に有限だが，場合によっては無限系も
取り扱える


## （今回はこの例を扱います）

テンソルネットワークの例1：統計物理学
古典イジング模型（磁性体のモデル）

$$
\mathcal{H}=-J \sum_{\langle i, j\rangle} S_{i} S_{j} \quad\left(S_{i}= \pm 1=\uparrow, \downarrow\right)
$$

温度 $T$ での確率分布：ボルツマン分布

$$
\begin{aligned}
P(\Gamma)=\frac{1}{(Z)} e^{-\beta \mathcal{H}(\Gamma)} & \text { 状態 : } \Gamma
\end{aligned}=\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}
$$



分配関数 $: ~ Z=\sum_{\Gamma\left(2^{\text {NO 和 })}\right.} e^{-\beta \mathcal{H}(\Gamma)} \longrightarrow \quad \begin{gathered}\text { 熱力学自由エネル } \\ F=-k_{B} T \ln Z\end{gathered}$

## 1 次元イジング模型の転送行列

$$
\begin{gathered}
\mathcal{H}=-J \sum_{i=1}^{L-1} S_{i} S_{i+1} \\
S_{i}=1,-1
\end{gathered}
$$

分配関数


$$
1=\uparrow \quad-1=\downarrow
$$

$$
\begin{aligned}
Z & =\sum_{\left\{S_{i}= \pm 1\right\}} e^{\beta J \sum_{i} S_{i} S_{i+1}} \\
& =\sum_{\left\{S_{i}= \pm 1\right\}} \prod_{i=1}^{L-1} e^{\beta J S_{i} S_{i+1}} \\
& =\sum_{S_{1}= \pm 1, S_{L}= \pm 1}\left(T^{L-1}\right)_{S_{1}, S_{L}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 転送行列 }+1 \quad-1 \\
& T=\left(\begin{array}{cc}
e^{\beta J} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta J}
\end{array}\right) \begin{array}{c}
+1 \\
-1
\end{array} \\
& T_{S_{i}, S_{i+1}}=e^{\beta J S_{i} S_{i+1}}
\end{aligned}
$$

分配関数は転送行列の積でかける

分配関数のダイアグラム
例：1 次元イジング模型
転送行列


$$
\begin{aligned}
& T_{S_{i}, S_{i+1}}=e^{\beta J S_{i} S_{i+1}} \quad \underline{S_{i}} T^{S_{i+1}} \\
& Z=\sum_{S_{1}= \pm 1, S_{L}= \pm 1}\left(T^{L-1}\right)_{S_{1}, S_{L}} \\
&=\sum_{S_{1}= \pm 1, S_{L}= \pm 1}-T-T-T-T-T-T-S_{L}
\end{aligned}
$$

＊周期境界条件の場合

$$
Z=\operatorname{Tr} T^{L}=\quad\langle-T-T-T-T-T
$$

## 転送行列表現の拡張

2 次元正方格子模型の
－つの正方形に注目


Aの配置


各辺のボルツマン重みの積：4 階の＂テンソル＂

$$
A_{S_{1}, S_{2}, S_{3}, S_{4}}=e^{\beta J\left(S_{1} S_{2}+S_{2} S_{3}+S_{3} S_{4}+S_{4} S_{1}\right)}
$$

イジング模型
Aは $2 \times 2 \times 2 \times 2$ のテンソル
分配関数＝テンソルの＂掛け算＂

$$
Z=\sum_{\left\{S_{i}= \pm 1\right\}} A_{S_{1}, S_{2}, S_{3}, S_{4}} A_{S_{2}, S_{5}, S_{6}, S_{7}} \cdots A_{S_{i}, S_{j}, S_{k}, S_{l}} \cdots
$$

## 分配関数のテンソルネットワーク表現

$$
A_{S_{1}, S_{2}, S_{3}, S_{4}}=e^{\beta J\left(S_{1} S_{2}+S_{2} S_{3}+S_{3} S_{4}+S_{4} S_{1}\right)}
$$



分配関数＝テンソルAの積のネットワーラ
テンソルネットワーク

正方格子イジング模型 $\rightarrow 45$ 度傾いた正方格子ネットワーク ＊元の格子点と同じ場所にテンソルが配置される正方格子ネットワークで分配関数を表現することもできる。

## テンソルネットワークの例2：量子回路

## 量子回路：

量子ビットに演算するゲート操作の回路図

googleの＂量子超越＂回路
F．Arute，et al．，Nature 574， 505 （2019）


## （この例も少し関連します）

## テンソルネットワークの例3：量子多体状態



## 量子多体系の低エネルギー状態：

- 一般の状態（ランダムベクトル）に比べて，少ない量子相関
- c．f．エンタングルメントエントロピーの面積則

テンソルネットワークによる高精度の近似

| －Openな足は＂あり＂ |
| :--- |
| •規則 $\cdot$ 不規則 |
| •有限 $\cdot$ 無限 |

テンソルネットワークの例4: テンソル型データ

任意のテンソル型データ
$T_{i_{1}, i_{2}, \ldots, i_{N}}$ ：量子多体状態と同様にして分解可能 テンソル型データ
テンソルネットワーク分解


例1：画像データセット
（Q．Zhao，et al arXiv：1606．05535）
COIL－100 dataset $=\underline{32 \times 32} \times \underline{3} \times \underline{7200}$ テンソル
ピクセル 色 画像数


テンソルリング分解


例2：ニューラルネットワークの重み行列
（Z．－F．Gao et al，Phys．Rev．Research 2， 023300 （2020）．）
$x_{i}$ ：input neuron（pixel）
$y_{i}$ ：output neuron
$W_{i j}$ ：weight matrix connecting $x$ and $y$


## テンソルネットワーク計算の基礎

## テンソルネットワークの数値計算

テンソルネットワークを用いた応用の基本計算要素

- テンソルの縮約
- 基本的に，2つずつ縮約計算をする
- テンソルを行列に変形し，BLASなどを用いる


## －テンソルの低ランク近似



- 特異値分解による低ランク近似の拡張
- 近似的な縮約を行う目的などに用いられる
- 多くの場合，テンソルを行列に変形し，行列の特異値分解を用いる


## －テンソルの線形問題

- テンソルから構成される行列の（一般化）固有値問題
- 量子多体問題，テンソル分解などの＂最適化＂で使用

テンソルの基本演算は，（現状は）行列に変形して行われる

## テンソルの行列への変形

テンソルの足をまとめて行列とみなす
ダイアグラム


テンソル


$$
\begin{array}{cc}
A_{(i, l),(j, k)} & A_{(i, j),(k, l)} \\
\chi^{2} \times \chi^{2} & \chi^{2} \times \chi^{2}
\end{array}
$$

- テンソル用のライブラリで簡単に行える。（例：numpy．reshape）
- 行列への変形は一般に，一意ではない
- どの様に行列化するかは，目的に合わせる


## テンソルネットワークの縮約

テンソルネットワーク縮約の計算量
ループのないツリー型の構造以外では，
計算量はテンソル数に関して，指数関数的に増大する

長さNのchain


局所テンソル：

$$
\chi \times \chi
$$

端から順に縮約：$O\left(N \chi^{2}\right)$
$L \times L$ のsquare lattice


局所テンソル

$\chi \times \chi \times \chi \times \chi$
大規模なテンソルネットワーク縮約は近似的に評価
$2 d$ 規則TNに対する汎用的アプローチ：・テンソル繰り込み
－行列積状態法
＊不規則でも同種の近似は可能
－角転送繰り込み群

テンソル繰り込み群

## テンソル繰り込み群

－M．Levin and C．P．Nave，PRL（2007）によるTensor network Renormalization Group（TRG）から始まった比較的新しい流れ
－分配関数のテンソルネットワーク表現を粗視化していくことで，近似的に分配関数を計算する

- 粗視化 $\longleftrightarrow$ 実空間繰り込み群
- 種々の格子模型に適用可能
- 物性分野だけでなく，素粒子•原子核分野でも近年研究が進んで いる
－経路積分表示により，D次元の量子系とD＋1次元の古典系が対応

TRGでやりたいこと
分配関数


繰り込み
（長さスケールが 12 倍）


$$
A: D \times D \times D \times D
$$

$L \times L$ の正方格子

$\tilde{A}: D \times D \times D \times D$
$(\mathrm{L} \times \mathrm{L}) / 2$ の正方格子

テンソルの大きさを変えずに テンソルの数を減らす

## TRGの準備：行列の低ランク近似

行列の階数（rank）：
行列の行（or 列）ベクトルのうち線形独立なものの数 A： $\mathrm{N} \times \mathrm{M}$ 行列 $\Rightarrow \operatorname{rank}(A) \leq \min (N, M)$

低ランク近似：
行列Aの低ランク行列での近似 $\quad \operatorname{rank}(\tilde{A})=R<\operatorname{rank}(A)$
いらない情報をそぎ落として，重要な情報だけを残す
近似の精度

$$
\epsilon=\|A-\tilde{A}\| \quad\|X\| \equiv \sqrt{\sum_{i, j} X_{i j}^{2}}
$$

## TRGの準備：特異値分解

## 特異値分解

任意の行列 $\mathrm{N} \times \mathrm{M}$ 行列 A は以下の形に一意に分解できる

$$
\begin{aligned}
& A_{i, j}=\sum_{k=1}^{\min (N, M)} U_{i k} \lambda_{k} V_{j k}^{*} \\
& \lambda_{k} \text { は非負の実数。 } \lambda_{k} \geq 0 \\
& \quad \begin{array}{l}
\operatorname{rank}(\mathrm{A})=\text { 非ゼロの特異値の数 } \\
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \cdots \text { と並べると便利 } \\
U_{i k}, V_{j k}^{*} \quad \text { 一般化ユニタリ行列 } \\
\sum_{i} U_{i k} U_{i l}^{*}=\delta_{k l} \quad \sum_{i} V_{j k} V_{j l}^{*}=\delta_{k l}
\end{array} .
\end{aligned}
$$

Aの最適なRランク近似：特異値を大きい方からR個だけ残し，残りをゼロで置き換える

## TRGの準備：特異値分解による近似

Aの最適なRランク近似：特異値を大きい方からR個だけ残し，残りをゼロで置き換える


さらに
$=-\hat{U}-\sqrt{\tilde{\Lambda}}-\sqrt{\tilde{\Lambda}}-\tilde{V}^{\dagger}-=-X-Y-$
SVDを使うと
Aを小さい行列の積
に分解できる
$\sqrt{\tilde{\Lambda}}:$ 対角成分が $\sqrt{\lambda}$ の対角行列

$$
\begin{aligned}
X=\tilde{U} \sqrt{\tilde{\Lambda}} & : \mathrm{M} \times R \\
Y=\sqrt{\tilde{\Lambda}} \tilde{V}^{\dagger} & : \mathrm{R} \times N
\end{aligned}
$$

## テンソル繰り込みのレシピ

1．分解
行列とみなす

$A_{i, j, k, l}$
A：$D \times D \times D \times D$


$A_{(i, l),(j, k)} \quad A_{(i, j),(k, l)}$

SVD

$\operatorname{rank}(\mathrm{A})=\mathrm{D}$ に近似
$A: D^{2} \times D^{2}$
（近似）


## テンソル繰り込みのレシピ

2．粗視化


## テンソル繰り込みのレシピ

分配関数


簡単に計算できる物理量
自由エネルギー：$F=-k_{B} T \ln Z$

$$
\begin{array}{rll}
\text { エネルギー: } & E=-\frac{\partial \ln Z}{\partial \beta} & (\text { 微分を差分で近似 }) \\
\text { 比熱: } & C=\frac{1}{k_{B} T^{2}} \frac{\partial^{2} \ln Z}{\partial \beta^{2}} & \text { (微分を差分で近似 })
\end{array}
$$

イジング模型

## テンソル繰り込みでの計算例

$$
\mathcal{H}=-J \sum_{\langle i, j\rangle} S_{i} S_{j}
$$

Z．Y．Xie et al，Phys．Rev．B 86， 045139 （2012）
二次元イジング模型の自由エネルギー


$$
T_{c} / J=\frac{2}{\ln (1+\sqrt{2})} \simeq 2.269
$$

## テンソル繰り込みと臨界現象

テンソル繰り込みでは，臨界現象（臨界指数など）も計算可能


固定点テンソルと臨界指数

テンソルの固定点：


繰り込み変換で不変な テンソル
－転送行列の固有値から臨界指数を得る（Z．C．Gu and X．G．Wen，Phys．Rev．B 80， 155131 （2009）．）

－繰り込み操作から臨界指数を得る（cf．X．Lyu，R．G．Xu，and N．Kawashima，Phys．Rev．Research 3， 023048 （2021））


## 行列積状態による縮約

## 転送行列（再揭）

例：1 次元イジング模型

$$
\mathcal{H}=-J \sum_{i=1}^{L-1} S_{i} S_{i+1} S_{i}=1,-1
$$

分配関数


$$
Z=\sum_{\left\{S_{i}= \pm 1\right\}} e^{\beta J \sum_{i} S_{i} S_{i+1}}
$$

$$
=\sum_{\left\{S_{i}= \pm 1\right\}} \prod_{i=1}^{L-1} e^{\beta J S_{i} S_{i+1}}
$$

## 転送行列

$$
T=\left(\begin{array}{cc}
e^{\beta J} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta J}
\end{array}\right) \begin{gathered}
+1 \\
-1
\end{gathered}
$$

$$
T_{S_{i}, S_{i+1}}=e^{\beta J S_{i} S_{i+1}}
$$

$$
=\sum_{S_{1}= \pm 1, S_{L}= \pm 1}\left(T^{L-1}\right)_{S_{1}, S_{L}}
$$

分配関数は転送行列の積でかける

## 転送行列の対角化

## 転送行列

$$
T=\left(\begin{array}{ll}
e^{\beta J} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta J}
\end{array}\right) \quad \text { 転送行列は実対称行列 }
$$

固有値は実で，直行行列で対角化可能

$$
T=P^{t}\left(\begin{array}{cc}
\lambda_{+} & 0 \\
0 & \lambda_{-}
\end{array}\right) P \quad \begin{gathered}
\lambda_{+}=2 \cosh \beta J \\
\lambda_{-}=2 \sinh \beta J \quad\left|\lambda_{+}\right|>\left|\lambda_{-}\right| \\
P^{t} P=P P^{t}=I
\end{gathered}
$$

分配関数

$$
Z=\sum_{S_{1}= \pm 1, S_{L}= \pm 1}\left[P^{t}\left(\begin{array}{cc}
\lambda_{+}^{L-1} & 0 \\
0 & \lambda_{-}^{L-1}
\end{array}\right) P\right]_{S_{1}, S_{L}}
$$

分配関数の計算 $\rightarrow$ 転送行列の対角化
＊$L$ が大きな時は，（絶対値）最大の固有値が支配的

## 2次元系の転送行列

$L \times M$ の 2 次元系
M個のスピンを1セットで考えると 1 次元系と同等転送行列の大きさ 1次元系： $2 \times 2$

$L \times M$ の 2 次元系： $2^{M} \times 2^{M}\left(\right.$ or $\left.2^{L} \times 2^{L}\right)$
2次元以上では転送行列が系サイズに関して指数的に大！
厳密な計算はすぐに破綻する

## 2 次元イジング模型だったら，M＝50程度が限界 （疎行列の対角化問題）

転送行列の演算を近似的に計算？

## TNの縮約での転送行列と固有値問題

二次元のTN（例：イジング模型の分配関数）

（＊簡単のため，同じ転送行列が繰り返されているとする）絶対値最大の固有値入と対応する右•左固有ベクトル

$$
\begin{aligned}
T \vec{v} & =\lambda \vec{v} \\
\vec{u}^{t} T & =\lambda \vec{u}^{t}
\end{aligned} \quad Z \simeq \lambda^{M}(M \rightarrow \infty)
$$

固有ベクトルの計算：初期ベクトルに何度も転送行列をかける
固有値は簡単な演算で取り出せる

$$
\begin{aligned}
& \vec{v} \propto \lim _{m \rightarrow \infty} T^{m} \vec{v}_{0} \\
& \vec{u} \propto \lim _{m \rightarrow \infty}\left(T^{t}\right)^{m} \vec{u}_{0}
\end{aligned}
$$

$$
\lambda=\vec{u}^{t} T \vec{v}
$$

$$
\text { *規格化 : } \vec{u}^{t} \vec{v}=1
$$

ベクトルのデータ圧縮：テンソルネットワーク分解
転送行列の固有ベクトルの次元：
指数関数的に大きい！
a：足の次元
（イジング模型ではa＝2）$\quad Z=$


- 量子多体状態と同じ内部構造
- 同様にテンソルネットワーク分解が使える！


テンソルネットワーク状態を使った固有ベクトル計算

## 行列積状態（MPS）

（U．Schollwöck，Annals．of Physics 326， 96 （2011））
（R．Orús，Annals．of Physics 349， 117 （2014））

N本足のテンソル（ベクトル）を行列の積で表現

$$
\Psi_{i_{1} i_{2} \ldots i_{N}} \simeq A_{1}\left[i_{1}\right] A_{2}\left[i_{2}\right] \cdots A_{N}\left[i_{N}\right]
$$

$$
A[i]: \text { index } \mathrm{i} \text { の行列 }
$$



注：
－MPS は量子多体状態で広く用いられてきた

$$
|\Psi\rangle=\sum_{\left\{i_{1}, i_{2}, \ldots i_{N}\right\}} \Psi_{i_{1} i_{2} \ldots i_{N}}\left|i_{1} i_{2} \ldots i_{N}\right\rangle
$$

－MPS は応用数理では＂tensor train decomposition＂とも呼ばれている
（I．V．Oseledets，SIAM J．Sci．Comput．33， 2295 （2011））

## 行列積状態への厳密な変換

任意のテンソル（ベクトル）は特異値分解を繰り返すことで
厳密なMPS表現に常に変換できる


この構成では行列の次元は場所に依存


行列積状態における低ランク近似


もし，もとのテンソルがボンド次元 $\chi$ の行列積状態で精度良く近似できれ ば，Nの指数関数のデータ量をNの多項式にまで大幅に減らせる！

- ここでは，$\chi$ が $N$ に依存しないことを暗黙のうちに仮定した
- 1次元量子多体系で励起エネルギーにギャップがある基底状態では仮定は正当化できる。
- これは，2次元イジング模型の臨界温度以外に相当。
- 一般のテンソルでは，この性質が必ずしも成立はしない。（cf．面積則）
- 仮に $\chi$ が $N$ と共に増大するとしても，実用的には，MPS を使ってテンソルを近似できる。


## 行列積状態への＂演算子＂の適用と近似

$$
T_{T}^{\frac{w}{T}}=\frac{T^{\prime}}{\Psi^{\prime}}
$$

行列積表現：


繰り返し演算子を適用する場合，近似によりボンド次元を下げる必要

基本的な近似のアイデア
近似の例：


局所的なテンソルのみを変更

- この近似は，（同じボンド次元の範囲で）最適な近似ではないかもしれない
- 一般には，局所的な演算子でもMPS全体のテンソルに影響を与える
- Uがユニタリ演算子の場合には，この近似はほぼ最適

周りの影響を無視した粗い近似


行列とみなす

－

## 特異値分解による近似



粗い近似の意味
ここでの近似は，局所的なテンソルのみを取り出している
一般的には，この局所近似は必ずしも
全体を見た時の最善な近似ではない


MPS全体の影響を考える方法の例：TEBD法
Time evolving block decimation（G．Vidal，Phys．Rev．Lett．91， 147902 （2003）） キーワード：Schmidt coefficient，canonical form，entanglement，．．．


「環境テンソル」を含めたクラスターに対するSVD

## テンソルネットワーク表現の利点：iMPS

対象のテンソルが並進対象性を持つ場合
iMPS
同じテンソルを無限に繰り返すことで無限に長いテンソルを表現可能

＊同じ演算子を全体に作用させる場合


- iTEPD•並進対象性により近似の際のSVDは全て等価
- 局所的な計算1回だけで，無限系の計算ができる！
（G．Vidal，Phys．Rev．Lett．98， 070201 （2007））
（R．Orús and G．Vidal，Phys．Rev．B 78， 155117 （2008））
応用例：無限に大きな2次元イジング模型の分配関数計算
（おまけ）角転送繰り込み群

角転送行列繰り込み群（CTMRG）
－奥西•西野ら（1995）による逐次的な＂繰り込み＂によるテンソ ルネットワークの計算方法
－Corner Transfer Matrix Renormalization Group（CTMRG）
－分配関数のテンソルネットワーク表現を $L \rightarrow L+2$ のように数 サイトずつ大きくしていくことで，徐々に計算する
－近年，2次元量子多体系の基底状態計算アルゴリズム （PEPS法，TPS法）の一部にも使われる

## CTMRGでやりたいこと

$L \times L$ の分配関数が

$$
(L+2) \times(L+2) \text { の分配関数を計算 }
$$

（近似的に）計算できた


系を少し大きくする


角転送行列表現

$C: D \times D$

$\tilde{C}: D \times D$
Cの大きさを変えずに系を大きくする

角転送行列の意味
（近似なし）


角転送行列表現

$-e-=-$


## CTMRGのレシピ

1．SVDによる分解
行列と思ってSVD


Mは実対称（エルミート）行列 $\left(V^{\dagger} U\right)_{i, j}=\left(U^{\dagger} V\right)_{i, j}=(-1)^{\eta_{i}} \delta_{i, j}$ $\eta_{i}=0,1$

＊対称性を仮定

$$
\begin{aligned}
& =\sum_{i} \lambda_{i}^{4}(-1)^{4 \eta_{i}} \\
& =\sum_{i} \lambda_{i}^{4}
\end{aligned}
$$

特異値が大きいものD個 を残せば良い近似！

## CTMRGのレシピ

2．SVDを使って近似

$$
\tilde{U}: 2 D \times D
$$



## CTMRGのレシピ

くりこみ変換まとめ

1．LxL の系の角転送行列をSVD


2．Projectorを作る
特異値が大きい方から
D個だけ残す


3．（ $L+2) \times(L+2)$ の角転送行列を作成


大きさLの系の分配関数が逐次求まる

## 参考文献

- テンソルネットワーク法解説記事
- 数理科学 2022年2月号「特集：テンソルネットワーク法の進展」，サイエンス社
- 数理科学 2022年11月号の一部「量子多体系とテンソルネットワーク」大久保毅，サイエンス社
- 「テンソルネットワーク形式の進展と応用」西野友年，大久保毅，日本物理学会誌2017年10月号 （https：／／www．jstage．jst．go．jp／article／butsuri／72／10／72＿702／＿article／－char／ja／）
－「テンソルネットワークによる情報圧縮とフラストレート磁性体への応用」大久保毅，物性研究 Vol．7，No． 2 （物性若手夏の学校の講義テキスト）
（http：／／mercury．yukawa．kyoto－u．ac．jp／～bussei．kenkyu／archives／category／2018／vol07－2）
- テンソルネットワーク法テキスト
- 「テンソルネットワークの基礎と応用 統計物理•量子情報•機械学習」西野友年，サイエンス社 SGCライブラリ168（2021）．
－テンソルネットワーク法による数値計算の（お勧め）Review
－R．Orús，＂A practical introduction to tensor networks：Matrix product states and projected entangled pair states＂，Annal．Phys．349， 117 （2014）．

