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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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single-qubit gates chosen randomly from X Y W{ , , } on all qubits, 
followed by two-qubit gates on pairs of qubits. The sequences of gates 
which form the ‘supremacy circuits’ are designed to minimize the circuit 
depth required to create a highly entangled state, which is needed for 
computational complexity and classical hardness.

Although we cannot compute FXEB in the supremacy regime, we can 
estimate it using three variations to reduce the complexity of the circuits. 
In ‘patch circuits’, we remove a slice of two-qubit gates (a small fraction 
of the total number of two-qubit gates), splitting the circuit into two 
spatially isolated, non-interacting patches of qubits. We then compute 
the total fidelity as the product of the patch fidelities, each of which can 
be easily calculated. In ‘elided circuits’, we remove only a fraction of the 
initial two-qubit gates along the slice, allowing for entanglement 
between patches, which more closely mimics the full experiment while 
still maintaining simulation feasibility. Finally, we can also run full 
‘verification circuits’, with the same gate counts as our supremacy cir-
cuits, but with a different pattern for the sequence of two-qubit gates, 
which is much easier to simulate classically (see also Supplementary 
Information). Comparison between these three variations allows us to 
track the system fidelity as we approach the supremacy regime.

We first check that the patch and elided versions of the verification 
circuits produce the same fidelity as the full verification circuits up to 
53 qubits, as shown in Fig. 4a. For each data point, we typically collect 
Ns = 5 × 106 total samples over ten circuit instances, where instances 
differ only in the choices of single-qubit gates in each cycle. We also 
show predicted FXEB values, computed by multiplying the no-error prob-
abilities of single- and two-qubit gates and measurement (see also Sup-
plementary Information). The predicted, patch and elided fidelities all 
show good agreement with the fidelities of the corresponding full cir-
cuits, despite the vast differences in computational complexity and 
entanglement. This gives us confidence that elided circuits can be used 
to accurately estimate the fidelity of more-complex circuits.

The largest circuits for which the fidelity can still be directly verified 
have 53 qubits and a simplified gate arrangement. Performing random 
circuit sampling on these at 0.8% fidelity takes one million cores 130 
seconds, corresponding to a million-fold speedup of the quantum pro-
cessor relative to a single core.

We proceed now to benchmark our computationally most difficult 
circuits, which are simply a rearrangement of the two-qubit gates. In 
Fig. 4b, we show the measured FXEB for 53-qubit patch and elided ver-
sions of the full supremacy circuits with increasing depth. For the larg-
est circuit with 53 qubits and 20 cycles, we collected Ns = 30 × 106 samples 
over ten circuit instances, obtaining F = (2.24 ±0.21) × 10XEB

−3  for the 
elided circuits. With 5σ confidence, we assert that the average fidelity 

of running these circuits on the quantum processor is greater than at 
least 0.1%. We expect that the full data for Fig. 4b should have similar 
fidelities, but since the simulation times (red numbers) take too long to 
check, we have archived the data (see ‘Data availability’ section). The 
data is thus in the quantum supremacy regime.

The classical computational cost
We simulate the quantum circuits used in the experiment on classical 
computers for two purposes: (1) verifying our quantum processor and 
benchmarking methods by computing FXEB where possible using sim-
plifiable circuits (Fig. 4a), and (2) estimating FXEB as well as the classical 
cost of sampling our hardest circuits (Fig. 4b). Up to 43 qubits, we use 
a Schrödinger algorithm, which simulates the evolution of the full quan-
tum state; the Jülich supercomputer (with 100,000 cores, 250 terabytes) 
runs the largest cases. Above this size, there is not enough random access 
memory (RAM) to store the quantum state42. For larger qubit numbers, 
we use a hybrid Schrödinger–Feynman algorithm43 running on Google 
data centres to compute the amplitudes of individual bitstrings. This 
algorithm breaks the circuit up into two patches of qubits and efficiently 
simulates each patch using a Schrödinger method, before connecting 
them using an approach reminiscent of the Feynman path-integral. 
Although it is more memory-efficient, the Schrödinger–Feynman algo-
rithm becomes exponentially more computationally expensive with 
increasing circuit depth owing to the exponential growth of paths with 
the number of gates connecting the patches.

To estimate the classical computational cost of the supremacy circuits 
(grey numbers in Fig. 4b), we ran portions of the quantum circuit simu-
lation on both the Summit supercomputer as well as on Google clusters 
and extrapolated to the full cost. In this extrapolation, we account for 
the computation cost of sampling by scaling the verification cost with 
FXEB, for example43,44, a 0.1% fidelity decreases the cost by about 1,000. 
On the Summit supercomputer, which is currently the most powerful 
in the world, we used a method inspired by Feynman path-integrals that 
is most efficient at low depth44–47. At m = 20 the tensors do not reason-
ably fit into node memory, so we can only measure runtimes up to m = 14, 
for which we estimate that sampling three million bitstrings with 1% 
fidelity would require a year.

On Google Cloud servers, we estimate that performing the same task 
for m = 20 with 0.1% fidelity using the Schrödinger–Feynman algorithm 
would cost 50 trillion core-hours and consume one petawatt hour of 
energy. To put this in perspective, it took 600 seconds to sample the 
circuit on the quantum processor three million times, where sampling 
time is limited by control hardware communications; in fact, the net 

Single-qubit gate:
25 ns

Qubit
XY control

Two-qubit gate:
12 ns

Qubit 1
Z control

Qubit 2
Z control

Coupler

Cycle 1 2 3 4 5 6 m
Time

ColumnRow

7 8

A B C D C D BA

A

B

D

C

ba

W

W

X

X

Y

0

0

0

0

0

Fig. 3 | Control operations for the quantum supremacy circuits. a, Example 
quantum circuit instance used in our experiment. Every cycle includes a layer 
each of single- and two-qubit gates. The single-qubit gates are chosen randomly 
from X Y W{ , , }, where  W X Y= ( + )/ 2  and gates do not repeat sequentially. 
The sequence of two-qubit gates is chosen according to a tiling pattern, 
coupling each qubit sequentially to its four nearest-neighbour qubits. The 

couplers are divided into four subsets (ABCD), each of which is executed 
simultaneously across the entire array corresponding to shaded colours. Here 
we show an intractable sequence (repeat ABCDCDAB); we also use different 
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not 
shown) that can be simulated on a classical computer. b, Waveform of control 
signals for single- and two-qubit gates.
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FIG. 1. (a) Graphical representation of the weight matrix W in a
fully connected layer. The blue circles represent neurons, e.g., pixels.
The solid line connecting an input neuron xi with output neuron
y j represents the weight element Wji. (b) MPO factorization of the
weight matrix W . The local operators w(k) are represented by filled
circles. The hollow circles denote the input and output indices, il and
jl , respectively. Given ik and jk , w(k)[ jk, ik] is a matrix.

different kernels are used to extract different features. A
graphical representation of W is shown in Fig. 1(a).

Usually, the number of elements or neurons, Nx and Ny, are
very large, and thus there are a huge number of parameters
to be determined in a fully connected layer [9]. The convo-
lutional layer reduces the variational parameters by grouping
the input elements into many partially overlapped kernels, and
one output element is connected to one kernel. The number of
variational parameters in a convolutional layer is determined
by the number of kernels and the size of each kernel. It could
be much less than that in a fully connected layer. However, the
total number of parameters in all the convolutional layers can
still be very large in a deep neural network which contains
many convolutional layers [10]. To train and store these
parameters raises a big challenge in this field. First, it is time
consuming to train and optimize these parameters, and may
even increase the probability of overfitting. This would limit
the generalization power of deep neural networks. Second,
it needs a big memory space to store these parameters. This
would limit its applications where the space of hard disk is
strongly confined; for example, on mobile terminals.

There are similar situations in the context of quantum in-
formation and condensed-matter physics. In a quantum many-
body system, the Hamiltonian or any other physical operator
can be expressed as a higher-order tensor in the space spanned
by the local basis states [33]. To represent exactly a quantum
many-body system, the total number of parameters that need
to be introduced can be extremely huge, and should in prin-
ciple grow exponentially with the system size (or the size of
each “image” in the language of neural network). The matrix
product operator (MPO) was originally proposed in physics to
characterize the short-range entanglement in one-dimensional
quantum systems [34,35], and is now a commonly used
approach to represent effectively a higher-order tensor or
Hamiltonian with short-range interactions. Mathematically, it
is simply a tensor-train approximation [36,37] that is used to
factorize a higher-order tensor into a sequential product of
the so-called local tensors. Using the MPO representation, the
number of variational parameters needed is greatly reduced

since the number of parameters contained in an MPO just
grows linearly with the system size. Nevertheless, it turns
out that to provide an efficient and faithful representation
of the systems with short-range interactions whose entangle-
ment entropies are upper bounded [38,39] or, equivalently,
the systems with finite excitation gaps in the ground states.
The application of MPOs in condensed-matter physics and
quantum information science has achieved great successes
[40,41] in the past decade.

In this paper, we propose to solve the parameter problem in
neural networks by employing the MPO representation, which
is illustrated in Fig. 1(b) and expressed in Eq. (5). The starting
point is the observation that the linear transformations in a
commonly used deep neural network have a number of similar
features as the quantum operators, which may allow us to
simplify their representations. In a fully connected layer, for
example, it is well known that the rank of the weight matrix
is strongly restricted [42–44] due to short-range correlations
or entanglements among the input pixels. This suggests that
we can safely use a lower-rank matrix to represent this layer
without affecting its prediction power. In a convolutional
layer, the correlations of images are embedded in the kernels,
whose sizes are generally very small in comparison with the
whole image size. This implies that the “extracted features”
from this convolution can be obtained from very local clusters.
In both cases, a dense weight matrix is not absolutely neces-
sary to perform a faithful linear transformation. This peculiar
feature of linear transformations results from the fact that the
information hidden in a data set is just short-range correlated.
Thus, to accurately reveal the intrinsic features of a data set,
it is sufficient to use a simplified representation that catches
more accurately the key features of local correlations. This
motivates us to adopt MPOs to represent linear transformation
matrices in deep neural networks.

There have been several applications of tensor network
structures in neural networks [37,45–50]. Our approach dif-
fers from them by the following aspects: (1) It is physically
motivated, emphasizes more on the local structure of the
relevant information, and helps to understand the success of
deep neural networks. (2) It works in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained and the parameters are
entirely optimized through algorithms developed in neural
networks. (3) It is a one-dimensional representation, and is
flexible to represent the linear transformations including both
the fully connected layers and the entire convolutional layers.
(4) It is also used to characterize the complexity of image data
sets. (5) A systematic study has been done. These issues will
become clear in the following sections.

The rest of the paper is structured as follows. In Sec. II,
we present the way the linear layers can be represented by
MPO and the training algorithm of the resulting network. In
Sec. III, we apply our method systematically to five main
neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and
CIFAR-10. Experiments on more data sets can be found in
Sec. II. A in the Supplemental Material (SM) [51]. Finally, in
Sec. IV, we discuss the relation with previous efforts and the
possibility to construct a framework of neural networks based
on the matrix product representations in the future. In the SM

023300-2

xi: input neuron (pixel)
yi: output neuron 

: weight matrix connecting x and yWij

(Z.-F. Gao et al, Phys. Rev. Research 2, 023300 (2020).)
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TABLE 2
The results under different shifts of dimensions on functional data f2(x) with error bound setting to 10�3 . For the 10th-order tensor, all 9

dimension shifts were considered and the average rank r̄ as well as the number of total parameters Np are compared.

r̄ Np

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
TT-SVD 5.2 5.8 6 6.2 7 7 8.5 14.6 8.4 1512 1944 2084 2144 2732 2328 3088 10376 3312
TR-SVD 5.2 5.8 5.9 6.2 9.6 10 14 12.7 6.5 1512 1944 2064 2144 4804 4224 9424 7728 2080
TR-ALS 5 5 5 5 5 5 5 5 5 1360 1360 1360 1360 1360 1360 1360 1360 1360

TR-ALSAR 5.5 6.6 6.2 5.2 5.3 5.8 6.9 5.3 4.7 1828 2064 1788 1544 1556 1864 2832 1600 1324
TR-BALS 5 4.9 5 4.9 4.9 5 5 4.8 4.9 1384 1324 1384 1348 1348 1384 1384 1272 1324

However, the TR-ranks are usually unknown in practice,
we must resort to TR-ALSAR and TR-BALS that can adapt
TR-ranks automatically based on the error tolerance. As
compared with TR-ALSAR, TR-BALS can obtain more com-
pact representation together with smaller relative errors. In
addition, TR-BALS can even outperform TR-ALS in several
cases, implying that TR-ranks obtained from TR-SVD are
not always the optimal one. More detailed results can be
found in Table 2. These experiments demonstrate that TR
decomposition is stable, flexible and effective for general
data, while TT decomposition has strict limitations on data
organization. Therefore, we can conclude that TR model is a
more generalized and powerful representation with higher
compression ability as compared to TT.

In the next experiment, we consider higher order tensors
which are known to be represented well by TR model. We
simplify the TR-ranks as r1 = r2 = · · · = rd that are
varied from 1 to 4, n1 = n2 = · · · = nd = 4 and d = 10.
The cores, Gk, (k = 1, . . . , d), were drawn from the normal
distribution, which are thus used to generate a 10th-order
tensor. We firstly apply different algorithms with the setting
of ✏p = 10�3 to T generated by using different ranks.
Subsequently, we also consider Gaussian noise corrupted
tensor T +N (0,�2) with SNR=40dB and apply these algo-
rithms with the setting of ✏p = 10�2. As shown in Table 3,
the maximum rank of TT-SVD increases dramatically when
the true rank becomes larger and is approximately r2true,
which thus results in a large number of parameters Np (i.e.,
low compression ability). TR-SVD performs similarly to TT-
SVD, which also shows low compression ability when the
true rank is high. For TR-ALS, since the true rank is given
manually, it shows the best result and can be used as the
baseline to evaluate the other TR algorithms. In contrast to
TT-SVD and TR-SVD, both TR-ALSAR and TR-BALS are
able to adapt TR-ranks according to ✏p, resulting in the
significantly lower rank reflected by rmax and lower model
complexity reflected by Np. As compared to TR-BALS, TR-
ALSAR is prone to overestimate the rank and computation
cost is relatively high. The experimental results show that
TR-BALS can learn the TR-ranks correctly in all cases, and
the number of parameters Np are exactly equivalent to the
baseline, meanwhile, the running time is also reasonable.
For the noisy tensor data, we observe that TT-SVD and TR-
SVD are affected significantly with rmax becoming 361 and
323 when true rank is only 1, which thus results in a poor
compression ability. This indicates that TT-SVD and TR-SVD
are sensitive to noise and prone to overfitting problems. By
contrast, TR-ALS, TR-ALSAR, and TR-BALS obtain impres-

sive results that are similar to that in noise free cases. TR-
ALSAR slightly overestimates the TR-ranks. It should be
noted that TR-BALS can estimate the true rank correctly
and obtain the best compression ratio as TR-ALS given
true rank. In addition, TR-BALS is more computationally
efficient than TR-ALSAR. In summary, TT-SVD and TR-
SVD have limitations for representing the tensor data with
symmetric ranks, and this problem becomes more severe
when noise is considered. The ALS algorithm can avoid this
problem due to the flexibility on distribution of ranks. More
detailed results can be found in Table 3.

6.2 COIL-100 dataset

Fig. 3. The reconstruction of Coil-100 dataset by using TRSVD. The
top row shows the original images, while the reconstructed images are
shown from the second to sixth rows corresponding to ✏=0.1, 0.2, 0.3,
0.4, 0.5, respectively.

In this section, the proposed TR algorithms are evalu-
ated and compared with TT and CP decompositions on
Columbia Object Image Libraries (COIL)-100 dataset [56]
that contains 7200 color images of 100 objects (72 images
per object) with different reflectance and complex geometric
characteristics. Each image can be represented by a 3rd-
order tensor of size 128⇥ 128⇥ 3 and then is downsampled
to 32 ⇥ 32 ⇥ 3. Hence, the dataset can be finally organized
as a 4th-order tensor of size 32 ⇥ 32 ⇥ 3 ⇥ 7200. In Fig. 3,
we show the reconstructed images under different relative
errors ✏ 2 {0.1, . . . , 0.5} which correspond to different set
of TR-ranks rTR. Obviously, if rTR are small, the images
are smooth and blurred, while the images are more sharp
when rTR are larger. This motivates us to apply TR model
to extract the abstract information of objects by using low-
dimensional cores, which can be considered as the feature

COIL-100 dataset  = 32 x 32 x 3 x 7200 
(Q. Zhao, et al arXiv:1606.05535)
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FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A
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FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with
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FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E

(n)
mnjiuk from E
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lrf bud in three

dimensions.
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FIG. 7. (Color online) Graphical representation for the determi-
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the Monte Carlo result.27 Our result for the specific heat agrees
with the Monte Carlo one. At the critical temperature, Tc =
4.511544, the internal energy is found to be Uc = −0.995592
for D = 14. This value of Uc, as shown in Table I, also agrees
well with other published data.

From the temperature dependence of the specific heat
around the critical point, one can estimate the critical exponent
of the specific heat with the formula,

C ∼ t−α, (16)

where t = |1 − T/Tc|. However, as the specific heat data are
obtained simply from the numerical derivative of the internal
energy, the accuracy of the specific heat data is much less than
that of the internal energy, especially around the critical point.
This causes a big error in the determination of the exponent α
with the above formula. This problem can be solved by directly
evaluating this exponent from the temperature dependence of
the internal energy. From the temperature integration of the
specific heat, it is simple to show that the internal energy
should exhibit the following critical behavior:

U = Uc + at + bt1−α, (17)

FIG. 8. (Color online) The internal energy and the specific heat
for the 3D Ising model obtained by the HOTRG with D = 14.
The Monte Carlo result (black curve) obtained from an empirical
fit formula given in Ref. 27 is shown for comparison.

TABLE I. Comparison of the internal energy at the critical
temperature Uc for the 3D Ising model obtained by different methods.

Method Uc

HOTRG (D = 16) − 0.990842(3)
Series expansion30 − 0.991(1)
Series expansion31 − 0.9902(1)
Series expansion32 − 0.99218(15)
Monte Carlo27 − 0.990604(4)
Monte Carlo33 − 0.9904(8)
Monte Carlo34 − 0.990(4)

where a and b are unknown parameters which can be
determined by fitting.

Figure 9 shows the fitting curves for the internal energy
around the critical point obtained with Eq. (17). The critical
exponent is found to be α = 0.1023 and 0.1137 for the tem-
perature higher and lower than the critical value, respectively.
These values of the critical exponent are consistent with the
result obtained from the series expansion,28 0.104, and the
Monte Carlo calculation,29 0.111.

Figure 10 shows the temperature dependence of the sponta-
neous magnetization M obtained by the HOTRG with D = 14.
Our data agree well with the Monte Carlo results.35 From the
singular behavior of M , we find that the critical temperature
Tc = 4.511615 for D = 14. Furthermore, by fitting the data of
M in the critical regime with the formula,

M ∼ tγ , (18)

we find that the exponent γ = 0.3295, consistent with the
Monte Carlo29 (0.3262) and series expansion36 (0.3265)
results.

Figure 11 shows the critical temperature Tc determined
from the singular points of the internal energy as well as the
magnetization for D up to 16. The values of Tc obtained from
these two quantities agree with each other. For D = 16, Tc

obtained from the internal energy and the magnetization are
4.511544 and 4.511546, respectively. The relative difference
is less than 10−6. But Tc does not vary monotonically with

FIG. 9. (Color online) The internal energy (D = 14) and its fitting
curves with Eq. (17) around the critical point for the 3D Ising model.
α is the critical exponent for the specific heat.
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